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The Navier-Stokes vorticity equation is solved numerically for the circulation 
induced in a vertical plane, by a constant stress acting on a liquid, enclosed in a 
basin of uniform depth and vertical sides. 

Solutions of the linearized vorticity equation are obtained for all Reynolds 
numbers ( ~ 9 ~ / 4 p v ~  where rs is the surface stress, p is the density, v is the kine- 
matic viscosity, and D is the depth of the liquid) and solutions of the complete 
vorticity equation for Reynolds numbers 0-400. 

The notable feature of the solutions is the totally different end circulations. 
At the upwind end the flow becomes very slack, and the vorticity equation has a 
boundary-layer limit, while at the downwind end a damped wave occurs and the 
equation has an inviscid limit. 

At Reynolds numbers between 400 and 600, the streamlines at the downwind 
end lead to a condition of hydrodynamic instability, in approximate agreement 
with some experimental observations by G. H. Keulegan. 

1. Introduction 
This paper is a study of the solution of the equations of fluid motion in an 

enclosed basin. The flow considered is that induced by a, constant surface stress 
acting along the surface of a liquid contained in a basin of uniform depth and 
vertical sides. We solve numerically the Navier-Stokes equation for circulation 
in a vertical plane in the direction of the applied stress. 

The problem appears to have been studied theoretically before by Hidaka 
(1939). He, without the aid of an electronic computer, was not able to obtain any 
extensive results. In  the present work, solutions of the vorticity equation are 
obtained for the steady-state flow up to a high enough Reynolds number for the 
streamlines to indicate a condition of hydrodynamic instability. The Reynolds 
number at which this occurs has been observed experimentally by Keulegan 
(1951) in a laboratory investigation of wind-tides at low Reynolds numbers. 
His findings are in approximate agreement with our result. The essential feature 
of the solutions is that, as the Reynolds number increases, the end circulations 
extend progressively further from the walls and become totally different from 
one another. 

Basically, an excess of energy is supplied to the liquid through the shearing 
37 Fluid Mech. 26 
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stress at  the upwind? end, and transferred to the downwind end, where it is 
radiated away in the form of a damped wave, which is eventually of sufficient 
amplitude to lead to a condition of hydrodynamic instability. In  brief, upwind 
the vorticity equation has a boundary-layer limit, and downwind an inviscid 
limit. 

2. The Problem 
We will consider the circulation induced by a constant and uniform surface 

stress (7s), acting in the plane ( x , z )  of a liquid enclosed in the basin shown in 
figure 1. 

It will be assumed that the sides are far enough away from the plane ( x , z )  
for their influence to be negligible, and also that the depth of the liquid is suffi- 
ciently small for Coriolis forces to be unimportant compared with inertial and 

< L > 

FIGURE 1. The rectangular basin. 

viscous forces. The differential operators in the y-direction (a/ay), therefore can 
be set identically zero, and the analysis becomes strictly two-dimensional. 

The equations of motion are as follows: 

where V2 = (az/ax2) + (a2/ax2),  u is the velocity component in the x-direction, 
w is the velocity component in the x-direction ( z  measured vertically downwards), 
p is the pressure, g is the acceleration of gravity, p is the density of the liquid, and 
v is the dynamic viscosity of the liquid. 

We now make use of the two-dimensional continuity equation to define the 
velocity components in terms of the streamfunction ($), 

u = -a+la~, w = a$lax (3) 

t The term ' upwind' more precisely should be ' upstress', but upwind and downwind 
will be used throughout the paper because of their familiarity. 
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and by differentiating equation (l), w.r.t. z, and equation ( 2 )  w.r.t. x, eliminate 
the pressure derivatives, and obtain the two-dimensional vorticity equation, 

where 

Equation (4) is solved numerically below with the boundary conditions of con- 
stant applied surface stress, and no-slip on the sides and bottom; i.e. on the top 
surface of the liquid (1 in figure l), 

$ = O ,  

on the bottom (3  in figure l), 

and on the sides, respectively (2 and 4 in figure l), 

and 

Here, the origin (0 )  of the co-ordinate system is on the surface of the liquid a t  the 
upwind wall of the basin, D is the depth of the liquid, and L is the length of the 
basin. 

The first of these boundary conditions assumes that we neglect the effect 
of any free displacement of the surface due to the motion of the liquid. Before 
proceeding to the solution let us examine this assumption by deriving a general 
expression for the surface elevation (c)  from the equations of motion. Integrating 
equations (1) and ( 2 )  w.r.t. z, and applying the continuity equation, we have, re- 
spectively 

w2 = --(P-Pa)+SD 1 vV2wdz+g(z+~), 

P -5 

where Pa is the atmospheric pressure. 

and rearranging, we obtain, 
Thus, substituting equation ( 5 b )  into equation (5a ) ,  assuming aP,/ax = 0, 

where rb  is the stress on the bottom of the basin. The surface slope atlax there- 
fore contains terms arising both from the viscous and the inertial terms of the 
equations of motion. It is strictly negligible only for infinite g. However, provided 
that rs/pg(D + c )  is small, computed surface slopes a[/ax in all our solutions are 
also small. 

37-2 
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Let us now non-dimensionalize equation (4)) and the boundary conditions by 

X = x/D, Z = z/D, $ = @pv/rSD2. defining, 

Then, we obtain 

with boundary conditions analogous to the dimensional equation, but with a 
unit non-dimensional surface streg 

Solutions of equation (7) are derived below for various values of the parameter 

3. The limiting forms of solution 
(a )  The mid-basin solution 

At an infinite distance from the end walls of the basin, the X-derivatives in 
equation ( 7 )  vanish, and a t  all finite values of (rsD2/pv2), we obtain the one- 
dimensional vorticity equation 

a4$/az4 = 0. (9) 

The solution of equation (9) is the mid-basin solution ($o) .  Integrating, and apply- 
ing the boundary conditions, we obtain 

$h0 = - Z(Z - 1 ) 2 .  

The associated stress profile 
ro = r,(l-QZ) 

is linear, and substituting into the one-dimensional form of equation ( 6 ) )  we 
derive the mid-basin surface slope, 

The velocity profile, 
V, = (rsD/(4pv)}(3Z- 1 )  (2- 1 )  

is parabolic (figure 2)) and the mid-basin surface velocity, 

v, = ~ , D I ( ~ P v )  

defines a Reynolds number (Re) for the solutions, 

in terms of the parameter (8). 
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(b )  The  eigenequation asymptotic to the mid-basin solution 

Asymptotic to the mid-basin solution, i.e. at large distances from the end walls 
of the basin, we seek a solution, by expanding the streamfunction, $, as a small 
perturbation on the mid-basin solution. 

$ = h+€, (14) 

where e = Af (Z)ehx  

and h is a function of the Reynolds number (Re) .  

FICURE 2. The mid-basin stress and velocity profiles. 
U, = ~ , D / 4 p .  

Substituting equation (14) into the non-dimensional vorticity equation, and 
considering only terms of O(s) ,  we obtain 

where the primes denote differentiation w.r.t. 2. 

tion. As there are four homogeneous boundary conditions on f(Z), 
Equation (15), which is ordinary fourth order, is a linearized vorticity equa- 

f ( 0 )  = 0, f(1) = 0, f”(0) = 0, f’(1) = 0. 

it is an eigenequation-the exponent A, is an eigenvalue, andf(2) is the corre- 
sponding eigenfunction. 

Let us consider the solution of equation (15), under the limiting processes 
of (i) Re --f 0,  (ii) Re  --f co. 

( c )  The limiting solutions of the eigenequation 
(i) Re 3 0 

As Re + 0, equation (15) tends to 

f” + 2h2f“ + h4f = 0 



582 John A.  T. Rye 

which is derived from the linearized form of the Navier-Stokes equations, namely 
the biharmonic equation, 

v44 = 0. 

A notable feature of equation (16) is that it is symmetrical in A. Hence, 

is also a solution, and 4 is independent of the sign of the surface stress (T~). 
The solution of equation (16) has been obtained by methods recently developed 
by the author?, and is recorded in table 1. 

r 'I 

A h 2 + 0 - 1 6 7  0.333 0.5 0.667 0.833 

From equation (16) - k 3 . 9  0.66 1 0.94 0-58 0.17 
Relaxation solution 0-13 & 3.7 0-66 1 0.96 0-61 0.20 

TABLE 1. The Re = 0 parameters 

(ii) Re -+ co 
For Re > 0, equation (15) is not symmetrical in A. Hence, 4 depends on the 

sign of rs. In  other words, we expect to find two types of solutions to the equation; 
one appropriate to flow upwind of the mid-basin flow, and the other to flow 
downwind. 

Let us discover the limiting forms of these solutions as Re -+ co. Consider 
first the physical processes which are involved. Energy is transferred from one 
end of the basin to the other by the mid-basin flow in three ways: by transport 
of kinetic energy, by transport of potential energy, and by working of pressure 
forces. There is no mass flow, and the liquid is in hydrostatic equilibrium, and 
so the rate of working of the pressure forces is equal and opposite to the flux of 
potential energy. The total energy is therefore given by the kinetic energy trans- 
fer, which clearly transports energy from the upwind to the downwind end of 
the basin. This implies that the upwind flow produces an excess of energy and that 
the surface shearing stress, which is the only means of supplying energy to the 
liquid must here play an essential part. On the other hand the downwind circula- 
tion must dissipate an excess of energy, and, if we assume that the Reynolds 
number is not so high that turbulent breakdown occurs, this excess energy is 
likely to be radiated away in the form of a damped wave. 

Hence, in brief, we expect a boundary-layer limit to equation (15) to be appro- 
priate upwind, and an inviscid limit downwind. As Re + co, therefore, at  the up- 
wind end, 

and a t  the downwind end, 
f'" = -4ReA(&f"-4;j'f)  (17) 

f$;A2f+$;f"--4{f = 0. (18) 

t The basis of the method of solution is described in Bye (1966). Equation (1  6),  is of some 
mathematical interest, since it is not strictly an eigenequation, although a t  least one special 
solution exists (table 1). 
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Equation (17) is an exact linearization of the boundary-layer vorticity equation, 

and equation (18) is derived by formally letting R e  + 00 in equation (15). 
Finite-difference solutions of equations (17) and (18) have been obtained, 

using a programme of the Oxford University Laboratory, based on the method 
of inverse iteration, with mesh intervals, respectively, h, = &, and h, = +z, 
- 1 1 1  __ _- 
1 2 " ' 1 2 ,  24 .  

h 6' Z+0*167 0.333 0.5 0.667 0.833 

Upwind -40.0/Re - 0.65 1 0.96 0.62 0.19 
Downwind - C 3.721 1.70 0-22 0.67 1 0.79 0-48 

TABLE 2. The Re = co parameters 

The fundamental eigenparameters are recorded in table 2 ,  and the eigenfunc- 

We note that consistent with our physical argument: 
(a)  The negative R e h  of equation (17) implies an upwind solution. Thus the 

limiting upwind perturbation as Re + 00, is exponential with a zero decay factor. 
( b )  the negative (A2)  of equation (18) implies an oscillating flow with a wave- 

length, 

Hence the limiting downwind perturbation as Re --f co, is an undamped oscilla- 
tion. Harmonic eigenvalues of equation (17), with R e  h negative, have also been 
obtained. However, as the full solution of the vorticity equation refers to the 
fundamental mode, they will not be discussed further ($4). No harmonic solutions 
with a negative h2 were obtained for equation (18). 

tions are shown in figures 3 and 4. 

6 = 2n/(hJ. 

( d )  T h e  full solution of the eigenequation 

The approach to the limiting eigenvalues has been studied by the numerical 
solution of the complete eigenequation (15). We assumed a series of values for A, 
and solved the equation as an eigenvalue problem in Re ,  using a Texas Univer- 
sity Computer Programme entitled 'F4UTEX MATSUB '. Graphs were then 
drawn showing the variation of h with Re.  

The discrepancies between the eigenvalues of the limiting equations, and 
the eigenvalues of equation (15) in the limit R e  + co, are due to the cruder finite- 
difference networks (h, = +, $, $, Q) used in the latter solution. 

(i) T h e  upwind solution 

The approach to the limiting upwind eigenvalue is shown in figure 5 .  
As R e  increases, Ihl decreases, or, in physical terms since h is real, the decay 

factor of the upwind perturbation tends to zero. In  this manner, equation (15) 
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tends to the limiting equation (17). IRehl increases rapidly with Re, and has 
already attained about 90 % of its limiting value at Re = 50. 

Thus, the boundary-layer equation is a good approximation even at quite low 
Reynolds numbers. 

0.2 0.4 0.6 0.8 1.0 

f (2) 

FIGURE 3. The limiting upwind eigenfunction. 0, Re = a; 
x , third-order relaxation solution (Re = 400). 

1 1 1 1 1  
0.2 04 0.6 0.8 1.0 0.2 0 4  0.6 0.8 1.0 

f (2) f (2) 

FIGURE 4. The downwind eigenfunotions. (a )  0, Re = 40; 0,  Re = 400; 
( b )  0, Re = co; 0, Re = co (special solution). 

(ii) The downwind solution 

complex eigenparameters thus : 
In  the downwind solution, h is a complex number. Let us therefore define the 

h = -/A + 2748, h(2)  = g(2) + ip (2) .  

Then, rewriting equation (14) equivalently, we have 

q5 = q50 + Ah(2)  e@ 

= q50 + Af(2)  cos 27r(c/8 - P ( 2 ) )  epc, 
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where 6 = L / D  - X ,  f(2) = (g2(Z) +h2(2) )&,  

and P(2)  is a phase angle, which is a function of 2. 
The variation of the wavelength (8) with Re, and the exponential decay p 

in equation (19) are plotted in figures 6 and 7. As Re increases, 0 decreases rapidly, 

-10 1 1 I l l  I I I l l  1 I I l l  I 

1 10 100 1,000 10,000 
Re 

FIGURE 5 .  The upwind exponential decay. x , Second-order relation solutions; 
+ , third-order relaxation solutions; 0, eigensolution (15); tt, Re = co. 

rises to a slight maximum at about Reynolds number 200, and then decreases 
slowly to its limiting value. I Rep1 increases rapidly with Re, also appears to pass 
through a slight maximum at Reynolds number 200, and then decreases slowly 

(20) 
to the limiting value R e p  = - 150. 

The physical interpretation is that in the limit Re + co, the wavelength of the 
oscillation (8) of the perturbation tends to a constant, and the decay factor (p) 
tends to zero. At all finite Reynolds numbers (except 0 ) ,  therefore, the down- 
wind perturbation is a damped oscillation, as foreseen by our physical argument. 

4. The full solutions of the vorticity equation 
The perturbation analysis, of course, cannot show the streamfield in actual 

basins. We have therefore obtained relaxation solutions of the complete vorticity 
equation for a series of Reynolds numbers (0-400). In  all solutions, except one, 
the upwind and downwind solutions are examined separately. At low Reynolds 
numbers, they are parts of the solution in the whole basin, while at higher 
Reynolds numbers they are considered in independent half-basins. 

The interior region of these solutions approximates to the regime asymptotic 
to q50 in which the eigenequation is valid. In this region, relaxation estimates of 
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the eigenparameters have been calculated and compared with the eigensolutions 
of the previous section. The constant A in equations (14) and (19) has also been 
estimated for both the upwind and downwind circulations. The one exception is 
a solution for a short basin a t  Reynolds number 400. 

-600 

-500 

-400 

I I I I 

I I I I I  I I I I1 I / j  I I I  I I 

- 

- 

1 
0 200 400 600 800 

Re 

FIarJRE 6. The downwind oscillation wavelength. x , Relaxation solutions; 0,  eigen- 
solutions (15); -, Re = m; 0, Re = m (special solution). 

FIGURE 7 .  The downwind exponential decay. x , Relaxation solution; 
0,  eigensolution (15). 

( a )  The relaxation procedure 

Let us consider the solution of equation (7) on the network of the half-basin 
shown in figure 8, and assume that the half-basin is sufficiently long for the mid- 
basin solution to be applied as the interior boundary conditioni- 

where A is the length of the half-basin. The first step in obtaining the solution 
was to derive suitable finite-difference approximations to the equations of 
motion, and the boundary conditions. To this end, second- and third-order 
approximations were obtained, and applied to a variety of networks defined by 

t The actual criterion was I$@) -$o(z)l/$o(Z) 5 0.5 along any horizontal grid in the 
region &A < S < A .  In the whole basin solutions, the boundary conditions of 0 2 were used. 
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suitable choices of the X and 2 grid intervals, h, and hz respectively (cf. table 3). 
For example, for an interior point (P) with co-ordinates (j, k) in a network with 
equal grid intervals (hx = h, = h) ,  the stencil of the second-order finite-difference 
approximation to the equation of motion is 

1 

1 - 8  2 - 8  20 --I 1 ] $ ( j , k )  

h4 
2 -8  

L 

Re 
h4 

-- 

1 I 
- 1  

- 1  [l] 1 -1 4 -1 

- 1  4 0 - 4  1 +  [-11 0 [l] 

- 1  [-11 1 1 - 4  1 

1 

where the coefficients in small brackets represent two-term finite-difference 
operators which multiply the remaining coefficients. 

z=1 

0 1 2 3  
0 

1 

2 

3 

4 

X = A  

-4 

FIGURE 8. An upwind end network. 

The set of finite-difference equations was then solved by various relaxation 
procedures, which have been fully described elsewhere (Bye 1962, 1965). The 
solutions had one dominant characteristic. As the Reynolds number increased, 
the horizontal resolution required changed: at  the upwind end, it was sufficient 
to use large horizontal grid intervals (h,  >> h,), but at  the downwind end, especi- 
ally near the wall, small horizontal grid intervals (h, < h,) were essential. 
The large grid intervals at the upwind end solely decreased the number of 
network points required for the convergence and hence reduced the convergence 
time. Small grid intervals at  the downwind end, however, were necessary to 
eliminate from the solution numerical oscillations which have no reality for the 
differential equation. Figure 9 illustrates two solutions at Reynolds number 200. 

In  the first solution on the network h, = h, = h = Q, oscillations of the ordi- 
nates q5 with wavelength 2h are present, which are totallyremoved in the solution 
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on the finer network, h, = h, = h = A. This behaviour appears to be consistent 
with two the limiting forms of the linearized vorticity equation observed in 
the eigensolutions. Another method of checking the accuracy of the numerical 

I -. 

~143-144-151-159-165- 
151 155 161 167 171 

7 50 41 38 40 45 50 52 
37 81 113 117 103 81 61 49 44 45 47 52 56 57 

FIGURE 9. The Reynolds number 200 downwind solution. Top number : streamfunction 
for hZ = 95 network (solid streamlines), @ > 350 horizontal shading. Bottom number : 
streamfunction for hZ = 4 network (dashed streamlines), q5l > 350 vertical shading. 

solution was to apply a difference correction, by which the equations of motion 
are represented in the same network to a third-, instead of a second-order of 
approximation,i.e. with errors, O(h4).  Bythis means, the amplitude of the numeri- 
cal oscillation in the solution for a Reynolds number of 200 was reduced, and the 
solution at the upwind end somewhat improved, but the extra labour and com- 
putation involved was scarcely justified. 

The groups of solutions are summarized in table 3, and a full discussion of 
probable errors in each group is given in the text. 

The solutions are shown graphically in the unit (+l) used in the computer 
programmes namely, $ l =  - 8640$. Asymptotic to the mid-basin flow, the 
streamfunctions are expressed thus, 

which are the finite-difference equivalents of the solution of the linearized vor- 
ticity equations (14) and (19); &(Z) being the numerical mid-basin solution. 
The eigenfunction, f ( Z ) ,  is normalized so that its maximum value is 1, and is 
written as a group of five magnitudes a t  the five levels, Z = 4, Q, 3, $, Q respec- 
tively, which correspond to the points of the most commonly used grid (cf. table 3). 
Near the walls the solutions are not in general quantitatively represented, but 
special features are noted. Non-dimensional surface profiles ( &JgD/Ts), computed 
from equation (6), have also been outlined. 
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(b)  T h e  R e  = 0 circulation 

For R e  = 0, equation (7)  reduces to the biharmonic equation 

v4q5 = 0. 

The solution of equation (18) is symmetrical about the centre of the basin, and 
is shown for the downwind end in figure 10. 

The parameters h and f, calculated from the region asymptotic to the mid- 
basin flow are recorded in table 1. There is approximate agreement with the 
solution of equation (16). The surface slope (computed by equation (6)) increases 
towards the end wall, a wall stress minimum occurs just above 2 = 9. 

Approxi- 

I .\ computer 
No. of Grid time to 

Reynolds- No. of grids intervals obtain 
number End of solu- (-*-> & solution 

Network mate 
A 

Group range basin tions p P hX hz (min) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0-40 
60-100 

250-400 
250-400t 
100-125 
150-200 
200t 
200-250 

400 
250-400 

Whole 
Whole 
Upwind 
Upwind 
Downwind 
Downwind 
Downwind 
Downwind 
Downwind 
Whole 

4 56 
2 109 
2 33 
2 33 
2 18 
2 24 
1 33 
2 33 
3 
1 

* 
* 

6 
6 
6 
6 
6 
6 
6 

12 
6 
6 

Q 
--- 
1 2  * 
* 

6 60 

s 30 
Q 30 

30 
150 
200 
200 
180 

Q 100 

Q 20 
Q 
Q 

+ 
Q 

-_ 
12 

* Groups 3 and 4, h, = 1 for Reynolds number 250; h, = 2 for Reynolds number 400. 
Groups 9 and 10, h, is variable, increasing from &near the wall to +in the interior (group 9), 
or Q a t  the upwind end (group 10). 

t Difference correction solutions. 

TABLE 3. The relaxation solutions 

L W  - 
50- 

Hidaka’s 
solution 

D 2 0  

FIGURE 10. The zero-Reynolds-number end solution. The surface profile indices 
are coefficients of the non-dimensional slope (ag/ax)/(T,/pgD). 
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99 yo of the mid-basin flow intensity, defined by 

D 

0 
I =I U;dz ,  

is attained within 2 depths of the wall. 
Equation (22) has been solved previously with the same boundary conditions 

by Hidaka (1939). He determined the circulation in basins in which the length 
was two and four times the depth. The second of his solutions has end circulations 
which are virtually independent, and corresponds very closely with the present 
solution (figure 10). Our network (h, = h, = 9) therefore does not have appre- 
ciably different truncation errors from Hidaka’s, although his network 

(h, = h, = $c) 
is much finer. 

2.56 

Surface - _. _. Surface 
Min. profile 

2.56 0-59 0.52 0.56 0 . 8 7  1 -02 1.20 J 1-35 

0.23 T , ,  0.36 T ~ ,  0.42 7s, 50- 

D 2 0  3 0  
FIGURE 11. The Reynolds number 40 upwind solution. The surface profile 

indices are coefficients of the non-dimensional slope (ai$kz)/(T,/pgD). 

( c )  The upwind end circulation 

The nine solutions obtained (two third-order, and seven second-order solutions) 
are listed in table 4. The solution for a Reynolds number of 40 is illustrated in 
figure 11. All the solutions are rather featureless. As the Reynolds number is 
increased the circulation becomes progressively slacker near the upwind wall. 
At Reynolds number 400, the flow does not come within 1 % of the mid-basin 
intensity until a distance of about 24 depths from the wall, compared with 2 
depths for the viscous solution. In  the asymptotic region the streamfunction 
increases exponentially to the mid-basin flow, as indicated by the eigensolutions. 
The parameters of the asymptotic circulation (21) are tabulated in table 4. 

Notable features of the table are: 
(i) A t  high Reynolds numbers ( >  100) the coefficient A tends to a constant 

A,. Slightly different estimates of A are given by the second- and third-order 
solutions, and its probable value is, A, = 0.030 0.002. 

(ii) The eigenfunction f(2) is similar at  all Reynolds numbers. 
(iii) The product (Reh) is plotted against Reynolds number in figure 5, for 

comparison with the eigensolution. 
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For Reynolds numbers > 50, the best fit from all the solutions satisfies equa- 

(23) 
tion (23), h = - B / ( R e  + C), 

where B = 40.0 0.05, and C = 9.5 f 1.0. At high Reynolds numbers, the second- 
and third-order relaxation estimates appear to straddle the limiting eigenvalue, 
R e  A. 

Rey- 
nolds 

number A 
10 0.050 
20 0.034 
40 0.030 
60 0-031 

100 0-031 
250 0.031 
400 0.031 
250t 0.029 
400t 0.029 

h 
- 2.22 
- 1.38 
- 0.78 
- 0.57 
- 0.335 
-0.138 
- 0.084 
-0.166 
- 0.108 

2 + 0.167 

0.65 
0.640 
0.646 
0.65 
0.67 
0.655 
0.655 
0.65 
0.65 

0.333 0.5 

1 0.95 
1 0.976 
1 0.973 
1 0.96 
1 1 
1 0.968 
1 0.968 
1 0.96 
1 0.96 

0.667 

0.63 
0.660 
0.667 
0.64 
0.64 
0.655 
0.655 
0.62 
0.62 

0.833 

0.23 
0.238 
0.246 
0.25 
0.26 
0.244 
0.244 
0.19 
0.19 

t Difference correction solutions. 

TABLE 4. The upwind parameters 

In  summary, the best numerical solution for the asymptotic upwind circula- 
tion at  high Reynolds numbers ( R e  > 250) is 

4 = $0 + A,f,(Z) ehX ,  

(24) 
where A ,  = 0-030 & 0.002, h = (- 40.0 f 0-05)/Re,  

fu(Z) = [0.66,1,0*96,0.63,0.19]. 

The distance (6)  at which the circulation attains 99 % of the mid-basin intensity 

S = 0.06Re D. is given approximately by 

The surface slope has a minimum (cf. figure 11) near the wall, and then rises to 
its mid-basin value. 

(a)  T h e  downwind end circulation 

Eleven second-order solutions, and one trial third-order solution were computed 
for the downwind end of the basin. The Reynolds numbers 40 and 400 solutions 
are shown in figure 12. The streamlines at  this end of the basin are totally different 
from the upwind end; the main feature is a strong eddy circulation near the wall. 
As the Reynolds number is increased, the intensity of the circulation increases 
until at Reynolds numbers a little greater than 400, the eddy is strong enough to 
induce reversed flow in its lee, as a weak wall eddy of opposite circulation to the 
main flow (figure 12). When the solution is examined in detail, these eddies are 
found to  be the most pronounced part of a damped oscillatory disturbance to the 
mid-basin flow which begins asymptotically at large distances, and increases 
exponentially in amplitude as the wall is approached. Stagnation points occur in 
the liquid at the nodes of the disturbance. 
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For the same Reynolds number, the distance from the wall a t  which the flow 
very nearly attains the mid-basin regime is less a t  the downwind end of the basin, 
than at the upwind end. This picture is entirely consistent with the downwind 
eigensolution. 

D 2 0  3 0  4 0  I 
Max. 

485 (b)  Surface stress \77 f--- 3- 
J profiie 

side c 

v - 1 6'3 

-200 

A- - 300 

3u 7 " AIinimum stream function 
I $ 

D 21) 3 0  4D 
FIGURE 12. The Reynolds numbers (a) 40, and (b) 400, downwind solutions. The surface 

profile indices are coefficients of the non-dimensional slope (a[ /ax) / (T , /pgD) .  

Rey- 
nolds 
num- 
ber A 

10 
20 
40 -0.039 
60 -0.040 

100 -0.036 
125 -0.037 
150 -0.035 
200 -0.035 
250 -0.073 
325 -0.073 
400 -0.087 
200% -0.065 
2501 -0.067 
ZOO? -0.050 

e 

2.10 
1-87 
1-84 
1-88 
1.90 
1.86 
2.02 
2-02 
2.13 
2-30 
1.97 
2.03 
2.06 

P 

- 2.66 
- 2.40 
- 2.02 
- 1.89 
- 1.80 
- 1.60 
- 1.59 
- 1.42 
- 1.39 
- 1.82 
- 1.70 
- 1-67 

f (2) 
A r 1 

Po Z-tO.167 0.333 0.5 0.667 0.833 

0.13 0.72 1 0.92 0.58 
0.50 0.36 0.80 1 0.96 0.54 
0.515 0,296 0.687 1 0.921 0-445 

0.93 0.52 0.48 0-24 0.64 1 
0.46 0.18 0.56 1 0.99 0.56 
0.38 0.17 0.54 1 0.99 0.58 
0.38 0.21 0.53 1 0.99 0.60 
0.36 0.20 0.52 1 0.96 0.60 
0.44 0.21 0.55 1 0.95 0.60 
0.44 0-20 0.53 1 0-94 0.61 
0.44 0.18 0.48 0.98 1 0.61 
0.46 0.19 0.52 0.90 1 0.57 
0.46 0-18 0.51 0.85 1 0.52 
0-40 0.18 0.58 0.99 1 0.59 

t Difference correction solution. 
$ h = & network solutions. 

TABLE 5. The downwind parameters 
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The parameters of equation (21) which best fit the solutions are summarized 

The notable features of the downwind asymptotic solutions are as follows. 
(i) The coefficient A is approximately represented over the range of Reynolds 

in table 5. 

numbers 0-400 by the relation 
A = AoReY, 

where A, = - 0.010 rf: 0.002, and y = 0.35 5 0.02. The log-log graph for this rela- 
tion is plotted in figure 13. 

I I I l l  I I I 1  

A 

t 1 

0.01 
10 100 1000 

Re 

FIGURE 13. The downwind coefficient, A .  x , second-order relaxation solutions (h,  = +); 
0, second-order relaxation solutions (h ,  = 1%); 0, third-order relaxation solutions 
(h, =&). 

The behaviour of A at this end of the basin is completely different from the 
upwind end. At the upwind end, it is positive, and tends to a constant at high 
Reynolds numbers. At this end, it is negative (increased circulation in the final 
eddy), and increases to give significant oscillations at relatively low Reynolds 
numbers. Agreement is good between estimates of A from the h, = Q and h, = 

networks, but the solutions having the grid oscillation, discussed in $4a, give 
low values. 

(ii) The eigenfunctionf(2) is again similar at  all Reynolds numbers. It does not, 
however, reach a limiting form until a Reynolds number higher than that for the 
upwind end. This is illustrated in figure 4, where the Reynolds number 40 and 
400 eigenfunctions from the relaxation solutions have been plotted. 

(iii) The exponential decay factor lpl decreases, and the wavelength (8) 
decreases and then increases slowly, as the Reynolds number increases. 

Physically, this means that at small Reynolds numbers, the only important 
oscillation is the end eddy, but as the Reynolds number increases, the oscillations 
further from the wall become more pronounced. 

The relaxation solution and the eigensolutions are in general agreement. 
However, figures 6 and 7 indicate that above Reynolds number 200, there are 
some rather significant differences in the behaviour of R e p  and 8 as functions of 

38 Fluid Mech. 26 
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Re, for the two types of solutions. The cause of these differences is discussed in an 
appendix. 

The conclusion of the discussion is that figure 12 (b)  probably shows oscillations 
with wavelength about 20% too high, and with a too rapid decay of the eddy 
chain away from the wall, i.e. the effect of the wall a t  the downwind end at high 
Reynolds numbers extends further than the relaxation solutions indicate-but 
not as far as at the upwind end. 

(iv) The phase angle (Po) for the centre mesh decreases only slightly as the 
Reynolds number is increased. This implies that as the wavelength is approxi- 
mately constant, the centre of the wall eddy is about the same distance from the 
wall over the whole range of Reynolds numbers. 

The variation in phase angle with depth is small in all the solutions ( 5 10" a t  
Reynolds number 40, and 5 30" at Reynolds number 325) and is such that the 
maximum of the oscillation is slightly nearer to the wall for the upper, than for 
the return flow. This behaviour is consistent with the solution of the linearized 
vorticity equation which predicts a constant phase angle at  Reynolds numbers 0 
and 00 and a variation intermediately. 

In  summary, the best numerical estimate for the asymptotic solution, at high 
Reynolds numbers, at the downwind end of the basin, is 

$ = $0 f A D f D ( e )  cos 2n ((C/O) - PO) eP57 

where AD = ( - 0.010 5 0.002) Re0.35*0*02 (Re, 0-400), 

p = ( -  150 50)/Re, O = 14'0 f. 0.05, (26) 
Po = 0.40 f 0.05, f D ( Z )  = [0*22, 0.70, 1,  0-79, 0,461. 

Near the wall, the form of the solution is distorted from the asymptotic solu- 
tion due to the finite amplitude of the oscillation. The distortion, however, 
even for Reynolds number 400 is not great, the non-linear interaction between 
the oscillatory perturbation, and the parent flow tending always to accentuate 
the oscillation. 

A feature of the high Reynolds number solutions is the symmetry of the end 
eddy. For the solution for a Reynolds number of 400 the maximum surface, 
return and vertical currents are nearly equal. Associated with the return and 
vertical currents are wall boundary layers of thickness about & the depth of the 
basin. 

The surface slope, again computed from equation (6), is also oscillatory, with 
very large values near the wall, and a negative gradient upstream of the end 
eddy. 

(e) The hydrodynamic stability of the circulation 

Although we have only considered steady-state circulations, the Reynolds 
number at which instability is theoretically possible can be predicted, since 
Rayleigh's theorem I, states that a sufficient condition for instability is that 
the velocity profile should possess a point of inflexion. The Reynolds number 
at  which such a point of inflexion is first realized is that at which reversed flow 
occurs. At Reynolds number 400, this condition has nearly been reached in the 
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lee of the wall eddy (figure 12). If we extrapolate, it is found that, at Z = $, 
q5 is first negative (which implies reversed flow) at about Reynolds number 500. 

As an approximation of the instability Reynolds number, this estimate is 
subject to two kinds of error; (i) the truncation errors of the solution, which have 
been discussed above and (ii), the fact that, even given a precise numerical solu- 
tion, it is unlikely that q5 will first become negative exactly at  a grid point. 

FIGURE 14. The reversed eddy. 

I 

D 2 0  3 0  
Wall eddy 

- - + Direction of circulation 
FIGURE 15. The short basin Reynolds number 400 solution. 

On such considerations, we assign the error limit, 100, so that the true in- 
stability Reynolds number (Re,) of an infinitely long basin lies in the range 
Re, = 400 to 600. From the shape of the mid-basin streamfunction q50(Z), 
and the eigenfunction f (Z) ,  the form of the reversed eddy may be interpolated 
(figure 14). 

The important feature is that q50(Z) is concave, while except very near the 
wall f(2) is convex. This gives rise, with the quasi-sinusoidal oscillation of 
amplitude, to the asymmetrical eddy shown. As the Reynolds number increases, 
Af(2) increases, and the eddy develops from the wall. For a short basin (L = a0) 
at Reynolds number 400, such an eddy is actually observed (figure 15). 

This solution was obtained to study the interaction of the end circulations. 
The main feature is the overall reduction in circulation intensity, and apparently 
a slightly decreased instability Reynolds number, 

Re, NN 350. 
38-2 
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These computed transitions are in order-of-magnitude agreement with wind- 
tunnel experiments by Keulegan. In  a basin with an essentially vertical end wall, 
he observed a transition from laminar to turbulent flow in the range of Reynolds 
numbers 400-1000, and described the transition as follows: ‘The passage from one 
type of flow to the other type does not show the steep and sudden transition 
ordinarily seen in fluid motion phenomena.’ The significance of this remark is 
that the instability of closed-basin flow occurs through a secondary circulation, 
rather than directly from the parallel mid-basin flow. Such a mechanism ensures 
that the transition to turbulence occurs at a much lower Reynolds number than 
in the parallel flow cases, which are those ‘ordinarily seen’, and is consequently 
of a much less violent nature. 

5. Discussion 
The motive of this work has been to obtain bounded solutions of the equations 

of motion. We have studied the response to an applied surface stress of a liquid 
of uniform density enclosed in a Cartesian basin. The solutions reveal totally 
different interactions of the viscous and inertial terms at either end of the basin. 

We shall discuss our results in two ways. First, let us contrast closed-basin 
flow with the more familiar pipe flow. Our mid-basin solution ($,,) corresponds to 
Poiseuille flow. The behaviour a t  the upwind end is analogous to the develop- 
ment of the flow in the inlet of a pipe for the region in which the two wall boundary 
layers have merged (Schlichting 1962, pp. 168-171). 

The behaviour at  the downwind end, however, which is of special interest, 
has no direct steady-state analogy in pipe flow. The equivalent limiting process 
leads to the inviscid Orr-Sommerfeld equation, the solution of which is a travel- 
ling wave. This is because Poiseuille flow does not have an interior zero velocity 
point. Thus a singular solution can only be obtained with a travelling wave. 
In  our case, the mid-basin velocity, 

&(Z) = 0 at Z =  37 

so that a travelling wave is not essential. 
Now let us presume that a steady-state solution may exist at any Reynolds 

number and examine its properties for the range of Reynolds numbers ordinarily 
encountered in nature, say Re M 10’- lolo. At these high Reynolds numbers 
the exponential decay factors in both the upwind and downwind solutions are 
very small. Hence the variation in the form of the solution along the basin is 
small. Further, the length of basin to attain the mid-basin flow is enormous, 
of order of magnitude, lo6 to 109 D (cf. equation 25), far greater than any natur- 
ally occurring basin. Therefore, in practice, the end circulations would always 
interpenetrate, and the mid-basin flow would never even be approached (figure 15 
is an elementary example of this type of solution). 

We may call such solutions almost fully developed ‘steady-state turbulence ’ 
solutions. They are very close to the limiting, infinite Reynolds numbers (or 
basin convection) solutions, in which the exponential decay factors of equations 
(24) and (26) are exactly zero. At infinite Reynolds numbers, the effect of the 
end walls would be ‘felt’ uniformly throughout the basin, or in other words, the 
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mid-basin (or basin conduction) solution would only be attained at an infinite 
distance from the walls. The relation between this hypothetical ‘ steady-state 
turbulence’ and natural turbulence is an intriguing question. The answer to 
which of course, lies in making the above qualitative reasoning quantitative; 
how can even steady-state solutions be obtained at  high Reynolds numbers? 

As we pointed out in @a, there are difficulties in extending the numerical 
solutions by the present techniques. Analytical techniques, having failed to 
readily yield results at  low Reynolds numbers, also, do not appear to be full of 
promise. In  a further paper, therefore, we adopt another procedure, we change 
our boundary conditions, but nevertheless consider solutions of the vorticity 
equation which have the same essential character. 
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Appendix 
The truncation errors in the downwind relaxation solutions 

The cause of the differences between the eigensolution and the relaxation solu- 
tions is almost certainly the unfortunate fact that the relaxation networks 
have a grid point actually on the singular point, Z = 8, of the inviscid limit 
(18) of the linearized vorticity equation. At this point &,(Z) = 0. The singularity 
is logarithmic, and has the form 

f = 1+3eIne,  

where E = 2-8 and as E -+ 0, f + 1, and f’ and f” +co. 
This circumstance gives rise to significant truncation errors as the inviscid 

behaviour dominates at  large Reynolds numbers. 
The above reasoning was checked by obtaining a special solution of equation 

(18) in which the truncation errors of the relaxation solutions were exactly 
reproduced, i.e. q50 was replaced by its finite-difference approximation 4:. The 
wavelength from this eigensolution was significantly greater (8 = 3.450 
compared with 1-700) ,  indicating that the increase in 8 (and also IRepuJ) at  
high Re in the relaxation solutions is almost certainly spurious (figures 6 
and 7 ) .  

A comparison of the eigenfunction of this special solution with f(Z), however, 
shows that the probable truncation errors of the relaxation eigenfunctions are 
small (cf. figure 4). 
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